Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2004:Suppl 39:63-99.
doi: 10.1002/ajpa.20155.

The aging of Wolff's "law": ontogeny and responses to mechanical loading in cortical bone

Affiliations
Review

The aging of Wolff's "law": ontogeny and responses to mechanical loading in cortical bone

Osbjorn M Pearson et al. Am J Phys Anthropol. 2004.

Abstract

The premise that bones grow and remodel throughout life to adapt to their mechanical environment is often called Wolff's law. Wolff's law, however, is not always true, and in fact comprises a variety of different processes that are best considered separately. Here we review the molecular and physiological mechanisms by which bone senses, transduces, and responds to mechanical loads, and the effects of aging processes on the relationship (if any) between cortical bone form and mechanical function. Experimental and comparative evidence suggests that cortical bone is primarily responsive to strain prior to sexual maturity, both in terms of the rate of new bone growth (modeling) as well as rates of turnover (Haversian remodeling). Rates of modeling and Haversian remodeling, however, vary greatly at different skeletal sites. In addition, there is no simple relationship between the orientation of loads in long bone diaphyses and their cross-sectional geometry. In combination, these data caution against assuming without testing adaptationist views about form-function relationships in order to infer adult activity patterns from skeletal features such as cross-sectional geometry, cortical bones density, and musculo-skeletal stress markers. Efforts to infer function from shape in the human skeleton should be based on biomechanical and developmental models that are experimentally tested and validated.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources