Latency from post-quantum cryptography shrinks as data increases

Using time to last byte — rather than time to first byte — to assess the effects of data-heavy TLS 1.3 on real-world connections yields more encouraging results.

The risk that a quantum computer might break cryptographic standards widely used today has ignited numerous efforts to standardize quantum-resistant algorithms and introduce them into transport encryption protocols like TLS 1.3. The choice of post-quantum algorithm will naturally affect TLS 1.3’s performance. So far, studies of those effects have focused on the “handshake time” required for two parties to establish a quantum-resistant encrypted connection, known as the time to first byte.

Although these studies have been important in quantifying increases in handshake time, they do not provide a full picture of the effect of post-quantum cryptography on real-world TLS 1.3 connections, which often carry sizable amounts of data. At the 2024 Workshop on Measurements, Attacks, and Defenses for the Web (MADweb), we presented a paper advocating time to last byte (TTLB) as a metric for assessing the total impact of data-heavy, quantum-resistant algorithms such as ML-KEM and ML-DSA on real-world TLS 1.3 connections. Our paper shows that the new algorithms will have a much lower net effect on connections that transfer sizable amounts of data than they do on the TLS 1.3 handshake itself.

Post-quantum cryptography

TLS 1.3, the latest version of the transport layer security protocol, is used to negotiate and establish secure channels that encrypt and authenticate data passing between a client and a server. TLS 1.3 is used in numerous Web applications, including e-banking and streaming media.

Related content
Prize honors Amazon senior principal scientist and Penn professor for a protocol that achieves a theoretical limit on information-theoretic secure multiparty computation.

Asymmetric cryptographic algorithms, such as the one used in TLS 1.3, depend for their security on the difficulty of the discrete-logarithm or integer factorization problems, which a cryptanalytically relevant quantum computer could solve efficiently. The US National Institute of Standards and Technology (NIST) has been working on standardizing quantum-resistant algorithms and has selected ML-Key Encapsulation Mechanism (KEM) for key exchange. NIST has also selected ML-DSA for signatures, or cryptographic authentication.

As these algorithms have kilobyte-size public keys, ciphertexts, and signatures — versus the 50- to 400-byte sizes of the existing algorithms — they would inflate the amount of data exchanged in a TLS handshake. A number of works have compared handshake time using traditional TLS 1.3 key exchange and authentication to that using post-quantum (PQ) key exchange and authentication.

These comparisons were useful to quantify the overhead that each new algorithm introduces to the time to first byte, or completion of the handshake protocol. But they ignored the data transfer time over the secure connection that, together with the handshake time, constitutes the total delay before the application can start processing data. The total time from the start of the connection to the end of data transfer is, by contrast, the time to last byte (TTLB). How much TTLB slowdown is acceptable depends highly on the application.

Experiments

We designed our experiments to simulate various network conditions and measured the TTLB of classical and post-quantum algorithms in TLS 1.3 connections where the client makes a small request and the server responds with hundreds of kilobytes (KB) of data. We used Linux namespaces in a Ubuntu 22.04 virtual-machine instance. The namespaces were interconnected using virtual ethernet interfaces. To emulate the “network” between the namespaces, we used the Linux kernel’s netem utility, which can introduce variable network delays, bandwidth fluctuations, and packet loss between the client and server.

A standard AWS EC2 instance icon (which looks like a stylized integrated circuit) in which a netem emulation is running, with an emulated cloud server (represented by cloud icon) passing data back and forth with a server namespace (represented by a server-stack icon) and a client namespace (represented by a desktop-computer icon).
The experimental setup, with client and server Linux namespaces and netem-emulated network conditions.

Our experiments had several configurable parameters that allowed us to compare the effect of the PQ algorithm on TTLB under stable, unstable, fast, and slow network conditions:

  • TLS key exchange mechanism (classical ECDH or ECDH+ML-KEM post-quantum hybrid)
  • TLS certificate chain size corresponding to classical RSA or ML-DSA certificates.
  • TCP initial congestion window (initcwnd)
  • Network delay between client and server, or round-trip time (RTT)
  • Bandwidth between client and server
  • Loss probability per packet
  • Amount of data transferred from the server to the client

Results

The results of our testing are thoroughly analyzed in the paper. They essentially show that a few extra KB in the TLS 1.3 handshake due to the post-quantum public keys, ciphertexts, and signatures will not be noticeable in connections transferring hundreds of KB or more. Connections that transfer less than 10-20 KB of data will probably be more affected by the new data-heavy handshakes.

PQTLS fig. 1.png
Figure 1: Percentage increase in TLS 1.3 handshake time between traditional and post-quantum TLS 1.3 connections. Bandwidth = 1Mbps; loss probability = 0%, 1%, 3%, and 10%; RTT = 35ms and 200ms; TCP initcwnd=20.
A bar graph whose y-axis is "handshake time % increase" and whose x-axis is a sequence of percentiles (50th, 75th, and 90th). At each percentile are two bars, one blue (for the traditional handshake protocol) and one orange (for post-quantum handshakes). In all three instances, the orange bar is around twice as high as the blue one.

Figure 1 shows the percentage increase in the duration of the TLS 1.3 handshake for the 50th, 75th, and 90th percentiles of the aggregate datasets collected for 1Mbps bandwidth; 0%, 1%, 3%, and 10% loss probability; and 35-millisecond and 200-millisecond RTT. We can see that the ML-DSA size (16KB) certificate chain takes almost twice as much time as the 8KB chain. This means that if we manage to keep the volume of ML-DSA authentication data low, it would significantly benefit the speed of post-quantum handshakes in low-bandwidth connections.

A line graph whose y-axis is the time-to-last-byte (TTLB) percentage increase and whose x-axis is the size of the data files transmitted over the secure connection, ranging from 0 KiB to 200 KiB. There are three lines, representing the 50th, 75th, and 90th percentiles. They start at almost the same value and all drop precipitously from 0 KiB to 50 KiB, continuing to decline from 50 KiB to 200 KiB, with the 90th-percentile line declining slightly more rapidly than the other two.
Figure 2: Percentage increase in TTLB between existing and post-quantum TLS 1.3 connections at 0% loss probability. Bandwidth = 1Gbps; RTT = 35ms; TCP initcwnd = 20.

Figure 2 shows the percentage increase in the duration of the post-quantum handshake relative to the existing algorithm for all percentiles and different data sizes at 0% loss and 1Gbps bandwidth. We can observe that although the slowdown is low (∼3%) at 0 kibibytes (KiB, or multiples of 1,024 bytes, the nearest power of 2 to 1,000) from the server (equivalent to the handshake), it drops even more (∼1%) as the data from the server increases. At the 90th percentile the slowdown is slightly lower.

A line graph whose y-axis is the time-to-last-byte (TTLB) percentage increase and whose x-axis is the size of the data files transmitted over the secure connection, ranging from 0 KiB to 200 KiB. There are three lines, representing the 50th, 75th, and 90th percentiles. They start at exactly the same value and all decline in lockstep, dropping precipitously from 0 KiB to 50 KiB and continuing a steady decline from 50 KiB to 200 KiB.
Figure 3: Percentage increase in TTLB between existing and post-quantum TLS 1.3 connections at 0% loss probability. Bandwidth = 1Mbps; RTT = 200ms; TCP initcwnd = 20.

Figure 3 shows the percentage increase in the TTLB between existing and post-quantum TLS 1.3 connections carrying 0-200KiB of data from the server for each percentile at 1Mbps bandwidth, 200ms RTT, and 0% loss probability. We can see that increases for the three percentiles are almost identical. They start high (∼33%) at 0KiB from the server, but as the data size from the server increases, they drop to ∼6% because the handshake data size is amortized over the connection.

A line graph whose y-axis is the time-to-last-byte (TTLB) percentage increase and whose x-axis is the size of the data files transmitted over the secure connection, ranging from 0 KiB to 200 KiB. There are three lines, representing the 50th, 75th, and 90th percentiles. The 50th-percentile line drops precipitously from 0 KiB to 50 KiB, declines more gradually from 50 to 100, then increases slightly from 100 to 200. The 90th-percentile line starts much lower but increases slightly to 50 KiB, before declining to 100 and 200. The 75th-percentile line starts lower still, declines to 100 KiB, the increases slightly from 100 to 200.
Figure 4: Percentage increase in TTLB between existing and post-quantum TLS 1.3 connections. Loss = 10%; bandwidth = 1Mbps; RTT = 200ms; TCP initcwnd = 20.
Related content
Amazon is helping develop standards for post-quantum cryptography and deploying promising technologies for customers to experiment with.

Figure 4 shows the percentage increase in TTLB between existing and post-quantum TLS 1.3 connections carrying 0-200 KiB of data from the server for each percentile at 1Mbps bandwidth, 200ms RTT, and 10% loss probability. It shows that at 10% loss, the TTLB increase settles between 20-30% for all percentiles. The same experiments for 35ms RTT produced similar results. Although a 20-30% increase may seem high, we note that re-running the experiments could sometimes lead to smaller or higher percentage increases because of the general network instability of the scenario. Also, bear in mind that TTLBs for the existing algorithm at 200KiB from the server, 200ms RTT, and 10% loss were 4,644ms, 7,093ms, and 10,178ms, whereas their post-quantum-connection equivalents were 6,010ms, 8,883ms, and 12,378ms. At 0% loss they were 2,364ms, 2,364ms, and 2,364ms. So, although the TTLBs for the post-quantum connections increased by 20-30% relative to the conventional connections, the conventional connections are already impaired (by 97-331%) due to network loss. An extra 20-30% is not likely to make much difference in an already highly degraded connection time.

A line graph whose y-axis is the time-to-last-byte (TTLB) percentage increase and whose x-axis is the size of the data files transmitted over the secure connection, ranging from 0 KiB to 200 KiB. There are three lines, representing the 50th, 75th, and 90th percentiles. They start at different values but all decline precipitously from 0 KiB to 50 KiB. From 50KiB to 100 KiB, the 75th-percentile line and the 50th-percentile line continue to decline, but the 90th-percentile line increases slightly. All three increase slightly between 100 KiB and 200.
Figure 5: Percentage increase in TTLB between existing and post-quantum TLS 1.3 connections for 0% loss probability under “volatile network” conditions. Bandwidth = 1Gbps; RTT = 35ms; TCP initcwnd = 20.

Figure 5 shows the percentage increase in TTLB between existing and post-quantum TLS 1.3 connections for 0% loss probability and 0-200KiB data sizes transferred from the server. To model a highly volatile RTT, we used a Pareto-normal distribution with a mean of 35ms and 35/4ms jitter. We can see that the increase in post-quantum connection TTLB starts high at 0KiB server data and drops to 4-5%. As with previous experiments, the percentages were more volatile the higher the loss probabilities, but overall, the results show that even under “volatile network conditions” the TTLB drops to acceptable levels as the amount of transferred data increases.

A line graph whose y-axis is the cumulative distribution function (CDF), from 0.0 to 1.0, and whose x-axis is time to last byte (TTLB) in milliseconds. There are five differently colored lines. The first four all have the same round-trip time. Two of them have bandwidth of 1Gbps and two bandwidth of 1Mbps. Within each bandwidth tier, the two lines represent 0% and 5% loss. The fifth line is Pareto-normal round-trip time. The high-bandwidth lines and the Pareto-normal line all begin near the origin. The high-bandwidth, low-loss line is almost vertical, reaching 1.0 almost immediately. The high-bandwidth, high-loss line and Pareto-normal line look like offsets of each other, with the Pareto-normal line increasing at a slightly lower rate; both rise fairly quickly, reaching 0.8 at about 1,000 milliseconds. The low-bandwidth lines both begin at TTLB values of of about 2,000. Again, the low-loss line is almost vertical; the higher-loss line rises at a slower rate.
Figure 6: TTLB cumulative distribution function for post-quantum TLS 1.3 connections. 200KiB from the server; RTT = 35ms; TCP initcwnd = 20.

To confirm the volatility under unstable network conditions, we used the TTLB cumulative distribution function (CDF) for post-quantum TLS 1.3 connections transferring 200KiB from the server (figure 6). We observe that under all types of volatile conditions (1Gbps and 5% loss, 1Mbps and 10% loss, Pareto-normal distributed network delay), the TTLB increases very early in the experimental measurement sample, which demonstrates that the total connection times are highly volatile. We made the same observation with TLS 1.3 handshake times under unstable network conditions.

Conclusion

This work demonstrated that the practical effect of data-heavy, post-quantum algorithms on TLS 1.3 connections is lower than their effect on the handshake itself. Low-loss, low- or high-bandwidth connections will see little impact from post-quantum handshakes when transferring sizable amounts of data. We also showed that although the effects of PQ handshakes could vary under unstable conditions with higher loss rates or high-variability delays, they stay within certain limits and drop as the total amount of transferred data increases. Additionally, we saw that unstable connections inherently provide poor completion times; a small latency increase due to post-quantum handshakes would not render them less usable than before. This does not mean that trimming the amount of handshake data is undesirable, especially if little application data is sent relative to the size of the handshake messages.

For more details, please see our paper.

Related content

US, NY, New York
AWS AI is looking for passionate, talented, and inventive Applied Scientists with a strong machine learning background to help build industry-leading Conversational AI Systems. Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Understanding (NLU), Dialog Systems including Generative AI with Large Language Models (LLMs) and Applied Machine Learning (ML). As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services that make use language technology. You will gain hands on experience with Amazon’s heterogeneous text, structured data sources, and large-scale computing resources to accelerate advances in language understanding. We are hiring in all areas of human language technology: NLU, Dialog Management, Conversational AI, LLMs and Generative AI. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, WA, Seattle
An information-rich and accurate product catalog is a strategic asset for Amazon. It powers unrivaled product discovery, informs customer buying decisions, offers a large selection, and positions Amazon as the first stop for shopping online. We use data analysis and statistical and machine learning techniques to proactively identify relationships between products within the Amazon product catalog. This problem is challenging due to sheer scale (billions of products in the catalog), diversity (products ranging from electronics to groceries to instant video across multiple languages) and multitude of input sources (millions of sellers contributing product data with different quality). Amazon’s Item and Relationship Identity Systems group is looking for an innovative and customer-focused applied scientist to help us make the world’s best product catalog even better. We believe that failure and innovation are inseparable twins. In this role, you will partner with technology and business leaders to build new state-of-the-art algorithms, models, and services to infer product-to-product relationships that matter to our customers. You will work in a collaborative environment where you can experiment with massive data from the world’s largest product catalog, work on challenging problems, quickly implement and deploy your algorithmic ideas at scale, understand whether they succeed via statistically relevant experiments across millions of customers. Key job responsibilities * Map business requirements and customer needs to a scientific problem. * Align the research direction to business requirements and make the right judgments on research/development schedule and prioritization. * Research, design and implement scalable machine learning (ML), natural language, or computational models to solve problems that matter to our customers in an iterative fashion. * Mentor and develop junior applied scientists and developers who work on data science problems in the same organization. * Stay informed on the latest machine learning, natural language and/or artificial intelligence trends and make presentations to the larger engineering and applied science communities.
US, CA, San Diego
Are you passionate about automation, knowledge extraction, and artificial intelligence through the use of Machine Learning, Natural Language Processing, Recommender systems, Computer Vision, and Optimization? We have a team of experienced scientists with a critical business mission making revolutionary leaps forward in these spaces. On this team you will work with an immense and diverse corpus of text, image, and audio to build generative and discriminative models, analyze and model customer reading behavior to measure engagement and detect risks, study and optimize manufacturing and fulfillment processes, and build AI-based systems for helping indie authors with marketing their books. This will involve combining methods from several science domains with domain knowledge across multiple businesses into sophisticated ML workflows. Our team has mature areas and green-field opportunities. We offer scientific autonomy, value end-to-end ownership, and have a strong customer-focused culture. Come join us as we revolutionize the book industry and deliver an amazing experience to our Kindle authors and readers. Key job responsibilities As a Machine Learning Scientist at Amazon, you will connect with world leaders in your field working on similar problems. You will be working with large distributed systems of data and providing technical leadership to the product managers, teams, and organizations building machine learning solutions. You will be tackling Machine Learning challenges in Supervised, Unsupervised, and Semi-supervised Learning; utilizing modern methods such as deep learning and classical methods from statistical learning theory, detection, estimation. MLS’s are specialists with the knowledge to help drive the scientific vision for our products. They are externally aware of the state-of-the-art in their respective field of expertise and are constantly focused on advancing that state-of-the-art for improving Amazon’s products and services. Great candidates for this position will have experience in the areas of data science, machine learning, NLP, optimization, computer vision, or statistics. You will have hands-on experience with multiple science initiatives as well as be able to balance technical strength with business judgment to make decisions about technology, models and methodological choices. You will strive for simplicity, and demonstrate significant creativity and high judgment. About the team Kindle Direct Publishing (KDP) and Print-On-Demand (POD) have empowered a new wave of self-motivated creators, tearing down barriers that once blocked writers from reaching readers. Our team builds rich applications that empower anyone to realize their dream of becoming an author. We strive to provide an experience that is powerful, simple, and accessible to all. We build tools that enable authors to design high quality digital and print books, reaching readers all around the world. This role will help ensure we maintain the trust of both our Authors and Readers by ensuring all books published to Amazon meet our standards.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to develop novel algorithms and modeling techniques to advance the state of the art with multimodal systems. Your work will directly impact our customers in the form of products and services that make use of vision and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate development with multimodal Large Language Models (LLMs) and Generative Artificial Intelligence (GenAI) in Computer Vision. About the team The AGI team has a mission to push the envelope with multimodal LLMs and GenAI in Computer Vision, in order to provide the best-possible experience for our customers.
US, WA, Bellevue
Do you want to work on a team where you are encouraged to build and have the autonomy to push boundaries? Invention has become second nature at Amazon, and the pace of innovation is only accelerating with breadth of our businesses expanding. Amazon’s growth requires leaders who move fast, have an entrepreneurial spirit to create new products, have an unrelenting tenacity to get things done, and are capable of breaking down and solving complex problems. The AIM, Planning team within SCOT comprises of S&OP, Inventory Prediction and Entitlement and Long-Term Capacity and Topology Planning. The team's charter is broad and complex and aimed at optimizing the utilization of fulfillment facilities and resources by accurately predicting demand and inventory efficiency measures while reducing stockouts and excess inventory costs across planning horizons, from short-term (within 13 weeks) to the long-term (13 weeks to 5 years). The team's north star is to be the reliable, single source of truth for inventory units and cube demand at granularities ranging from an FC’s bins to overall network level, and across planning horizons as close as next week to as far out as 3-5 years. To get there, we enhance or re-develop models and mechanisms where existing ones fail to account for structural shifts in supply chains, buying programs, or customer behaviors. We create new systems where science-based recommendations are currently lacking and being replaced by heuristics and offline human goal-seeking approaches. We strive to completely eliminate non-scientific interventions in our forecast guidance and capacity recommendations, and replace them with a system-driven outlook to uncover underlying root causes when departing from SCOT plans and recommendations. We institute authoritative and economics-based framework missing today to drive inventory efficiency measures for Retail buying programs (short/long-lead buys) and FBA plans that solve for capacity constraints in the most economical manner across horizons. This is a unique, high visibility opportunity for a senior science leader someone who wants to have business impact, dive deep into large-scale economic problems, enable measurable actions on the Consumer economy, and work closely with product managers, engineers, other scientists and economists. We are a Day 1 team, with a charter to be disruptive through the use of ML and bridge the Science and Engineering gaps that exist today. A day in the life In this pivotal role, you will be a technical leader in operations research or machine learning, with significant scope, impact, and visibility. Your solutions have the potential to drive billions of dollars in impact for Amazon's supply chain globally. As a senior scientist manager on the team, you will engage in every facet of the process—from idea generation, business analysis and scientific research to development and deployment of advanced models—granting you a profound sense of ownership. From day one, you will collaborate with experienced scientists, engineers, and product managers who are passionate about their work. Moreover, you will collaborate with Amazon's broader decision and research science community, enriching your perspective and mentoring fellow engineers and scientists. The successful candidate will have the strong expertise in applying operations research methodologies to address a wide variety of supply chain problems. You will strive for simplicity, demonstrate judgment backed by mathematical rigor, as you continually seek opportunities to innovate, build, and deliver. Entrepreneurial spirit, adaptability to diverse roles, and agility in a fast-paced, high-energy, highly collaborative environment are essential.
US, WA, Bellevue
We are a part of Amazon Alexa organization where our mission is “delight customers through contextual and personalized proactive experiences that keep customers informed, engaged, and productive without cognitive burden”. We are developing advanced systems to deliver engaging, intuitive, and adaptive content recommendations across all Amazon surfaces. We aim to facilitate seamless reasoning and customer experiences, surpassing the capabilities of previous machine learning models. We are looking for a passionate, talented, and resourceful Senior Applied Scientist in the field of Natural Language Processing (NLP), Large Language Model (LLM), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware personal assistant. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, shipping solutions via rapid experimentation and then iterating on user feedback and interactions. Key job responsibilities As a Senior Applied Scientist, you will leverage your technical expertise and experience to demonstrate leadership in tackling large complex problems, setting the direction and collaborating with applied scientists and engineers to develop novel algorithms and modeling techniques to enable timely, relevant and delightful recommendations and conversations. Your work will directly impact our customers in the form of products and services that make use of various machine learing, deep learning and language model technologies. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in the state of art.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, WA, Seattle
We are building GenAI based shopping assistant for Amazon. We reimage Amazon Search with an interactive conversational experience that helps you find answers to product questions, perform product comparisons, receive personalized product suggestions, and so much more, to easily find the perfect product for your needs. We’re looking for the best and brightest across Amazon to help us realize and deliver this vision to our customers right away. This will be a once in a generation transformation for Search, just like the Mosaic browser made the Internet easier to engage with three decades ago. If you missed the 90s—WWW, Mosaic, and the founding of Amazon and Google—you don’t want to miss this opportunity.
US, WA, Seattle
We are building GenAI based shopping assistant for Amazon. We reimage Amazon Search with an interactive conversational experience that helps you find answers to product questions, perform product comparisons, receive personalized product suggestions, and so much more, to easily find the perfect product for your needs. We’re looking for the best and brightest across Amazon to help us realize and deliver this vision to our customers right away. This will be a once in a generation transformation for Search, just like the Mosaic browser made the Internet easier to engage with three decades ago. If you missed the 90s—WWW, Mosaic, and the founding of Amazon and Google—you don’t want to miss this opportunity.