Jump to content

Solar eclipse of December 15, 1982

From Wikipedia, the free encyclopedia
Solar eclipse of December 15, 1982
Map
Type of eclipse
NaturePartial
Gamma1.1293
Magnitude0.735
Maximum eclipse
Coordinates65°18′N 56°54′E / 65.3°N 56.9°E / 65.3; 56.9
Times (UTC)
Greatest eclipse9:32:09
References
Saros122 (56 of 70)
Catalog # (SE5000)9471

A partial solar eclipse occurred at the Moon's descending node of orbit on Wednesday, December 15, 1982,[1] with a magnitude of 0.735. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

This was the last of four partial solar eclipses in 1982, with the others occurring on January 25, June 21, and July 20.

A partial eclipse was visible for parts of Northeast Africa, Europe, the Middle East, South Asia, and Central Asia.

Eclipse details

[edit]

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[2]

December 15, 1982 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 1982 December 15 at 07:22:50.6 UTC
Equatorial Conjunction 1982 December 15 at 09:11:50.4 UTC
Ecliptic Conjunction 1982 December 15 at 09:18:56.3 UTC
Greatest Eclipse 1982 December 15 at 09:32:08.9 UTC
Last Penumbral External Contact 1982 December 15 at 11:41:38.8 UTC
December 15, 1982 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.73506
Eclipse Obscuration 0.64327
Gamma 1.12928
Sun Right Ascension 17h29m51.3s
Sun Declination -23°15'36.8"
Sun Semi-Diameter 16'15.0"
Sun Equatorial Horizontal Parallax 08.9"
Moon Right Ascension 17h30m31.0s
Moon Declination -22°15'08.5"
Moon Semi-Diameter 14'47.8"
Moon Equatorial Horizontal Parallax 0°54'18.4"
ΔT 52.9 s

Eclipse season

[edit]

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of December 1982
December 15
Descending node (new moon)
December 30
Ascending node (full moon)
Partial solar eclipse
Solar Saros 122
Total lunar eclipse
Lunar Saros 134
[edit]

Eclipses in 1982

[edit]

Metonic

[edit]

Tzolkinex

[edit]

Half-Saros

[edit]

Tritos

[edit]

Solar Saros 122

[edit]

Inex

[edit]

Triad

[edit]

Solar eclipses of 1982–1985

[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[3]

The partial solar eclipses on January 25, 1982 and July 20, 1982 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 1982 to 1985
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
117 June 21, 1982

Partial
−1.2102 122 December 15, 1982

Partial
1.1293
127 June 11, 1983

Total
−0.4947 132 December 4, 1983

Annular
0.4015
137 May 30, 1984

Annular
0.2755 142

Partial in Gisborne,
New Zealand
November 22, 1984

Total
−0.3132
147 May 19, 1985

Partial
1.072 152 November 12, 1985

Total
−0.9795

Saros 122

[edit]

This eclipse is a part of Saros series 122, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on April 17, 991 AD. It contains total eclipses from July 12, 1135 through August 3, 1171; hybrid eclipses on August 13, 1189 and August 25, 1207; and annular eclipses from September 4, 1225 through October 10, 1874. The series ends at member 70 as a partial eclipse on May 17, 2235. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 9 at 1 minutes, 25 seconds on July 12, 1135, and the longest duration of annularity was produced by member 50 at 6 minutes, 28 seconds on October 10, 1874. All eclipses in this series occur at the Moon’s descending node of orbit.[4]

Series members 46–68 occur between 1801 and 2200:
46 47 48

August 28, 1802

September 7, 1820

September 18, 1838
49 50 51

September 29, 1856

October 10, 1874

October 20, 1892
52 53 54

November 2, 1910

November 12, 1928

November 23, 1946
55 56 57

December 4, 1964

December 15, 1982

December 25, 2000
58 59 60

January 6, 2019

January 16, 2037

January 27, 2055
61 62 63

February 7, 2073

February 18, 2091

March 1, 2109
64 65 66

March 13, 2127

March 23, 2145

April 3, 2163
67 68

April 14, 2181

April 25, 2199

Metonic series

[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

21 eclipse events between July 22, 1971 and July 22, 2047
July 22 May 9–11 February 26–27 December 14–15 October 2–3
116 118 120 122 124

July 22, 1971

May 11, 1975

February 26, 1979

December 15, 1982

October 3, 1986
126 128 130 132 134

July 22, 1990

May 10, 1994

February 26, 1998

December 14, 2001

October 3, 2005
136 138 140 142 144

July 22, 2009

May 10, 2013

February 26, 2017

December 14, 2020

October 2, 2024
146 148 150 152 154

July 22, 2028

May 9, 2032

February 27, 2036

December 15, 2039

October 3, 2043
156

July 22, 2047

Tritos series

[edit]

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

March 25, 1819
(Saros 107)

February 23, 1830
(Saros 108)

January 22, 1841
(Saros 109)

November 21, 1862
(Saros 111)

August 20, 1895
(Saros 114)

July 21, 1906
(Saros 115)

June 19, 1917
(Saros 116)

May 19, 1928
(Saros 117)

April 19, 1939
(Saros 118)

March 18, 1950
(Saros 119)

February 15, 1961
(Saros 120)

January 16, 1972
(Saros 121)

December 15, 1982
(Saros 122)

November 13, 1993
(Saros 123)

October 14, 2004
(Saros 124)

September 13, 2015
(Saros 125)

August 12, 2026
(Saros 126)

July 13, 2037
(Saros 127)

June 11, 2048
(Saros 128)

May 11, 2059
(Saros 129)

April 11, 2070
(Saros 130)

March 10, 2081
(Saros 131)

February 7, 2092
(Saros 132)

January 8, 2103
(Saros 133)

December 8, 2113
(Saros 134)

November 6, 2124
(Saros 135)

October 7, 2135
(Saros 136)

September 6, 2146
(Saros 137)

August 5, 2157
(Saros 138)

July 5, 2168
(Saros 139)

June 5, 2179
(Saros 140)

May 4, 2190
(Saros 141)

Inex series

[edit]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

April 14, 1809
(Saros 116)

March 25, 1838
(Saros 117)

March 6, 1867
(Saros 118)

February 13, 1896
(Saros 119)

January 24, 1925
(Saros 120)

January 5, 1954
(Saros 121)

December 15, 1982
(Saros 122)

November 25, 2011
(Saros 123)

November 4, 2040
(Saros 124)

October 15, 2069
(Saros 125)

September 25, 2098
(Saros 126)

September 6, 2127
(Saros 127)

August 16, 2156
(Saros 128)

July 26, 2185
(Saros 129)

References

[edit]
  1. ^ "December 15, 1982 Partial Solar Eclipse". timeanddate. Retrieved 9 August 2024.
  2. ^ "Partial Solar Eclipse of 1982 Dec 15". EclipseWise.com. Retrieved 9 August 2024.
  3. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. ^ "NASA - Catalog of Solar Eclipses of Saros 122". eclipse.gsfc.nasa.gov.
[edit]