Jump to content

Solar eclipse of September 11, 1969

From Wikipedia, the free encyclopedia
Solar eclipse of September 11, 1969
Map
Type of eclipse
NatureAnnular
Gamma0.2201
Magnitude0.969
Maximum eclipse
Duration191 s (3 min 11 s)
Coordinates15°36′N 114°06′W / 15.6°N 114.1°W / 15.6; -114.1
Max. width of band114 km (71 mi)
Times (UTC)
Greatest eclipse19:58:59
References
Saros134 (41 of 71)
Catalog # (SE5000)9441

An annular solar eclipse occurred at the Moon's descending node of orbit on Thursday, September 11, 1969,[1] with a magnitude of 0.969. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.2 days after apogee (on September 6, 1969, at 15:50 UTC), the Moon's apparent diameter was smaller.[2]

Annularity was visible from the Pacific Ocean, Peru, Bolivia and the southwestern tip of Brazilian state Mato Grosso. A partial eclipse was visible for parts of North America, Central America, the Caribbean, and western South America. Places west of the International Date Line witnessed the eclipse on Friday, September 12, 1969.

Eclipse details

[edit]

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[3]

September 11, 1969 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 1969 September 11 at 17:02:10.6 UTC
First Umbral External Contact 1969 September 11 at 18:05:48.3 UTC
First Central Line 1969 September 11 at 18:07:22.6 UTC
First Umbral Internal Contact 1969 September 11 at 18:08:57.1 UTC
Greatest Duration 1969 September 11 at 18:58:29.1 UTC
First Penumbral Internal Contact 1969 September 11 at 19:15:35.4 UTC
Equatorial Conjunction 1969 September 11 at 19:45:07.4 UTC
Ecliptic Conjunction 1969 September 11 at 19:56:27.0 UTC
Greatest Eclipse 1969 September 11 at 19:58:58.7 UTC
Last Penumbral Internal Contact 1969 September 11 at 20:42:42.5 UTC
Last Umbral Internal Contact 1969 September 11 at 21:49:10.9 UTC
Last Central Line 1969 September 11 at 21:50:42.6 UTC
Last Umbral External Contact 1969 September 11 at 21:52:14.2 UTC
Last Penumbral External Contact 1969 September 11 at 22:55:46.4 UTC
September 11, 1969 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.96904
Eclipse Obscuration 0.93904
Gamma 0.22014
Sun Right Ascension 11h19m09.2s
Sun Declination +04°23'48.2"
Sun Semi-Diameter 15'53.5"
Sun Equatorial Horizontal Parallax 08.7"
Moon Right Ascension 11h19m32.8s
Moon Declination +04°34'30.9"
Moon Semi-Diameter 15'10.1"
Moon Equatorial Horizontal Parallax 0°55'40.1"
ΔT 39.9 s

Eclipse season

[edit]

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of August–September 1969
August 27
Ascending node (full moon)
September 11
Descending node (new moon)
September 25
Ascending node (full moon)
Penumbral lunar eclipse
Lunar Saros 108
Annular solar eclipse
Solar Saros 134
Penumbral lunar eclipse
Lunar Saros 146
[edit]

Eclipses in 1969

[edit]

Metonic

[edit]

Tzolkinex

[edit]

Half-Saros

[edit]

Tritos

[edit]

Solar Saros 134

[edit]

Inex

[edit]

Triad

[edit]

Solar eclipses of 1968–1971

[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[4]

The partial solar eclipse on July 22, 1971 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1968 to 1971
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
119 March 28, 2968

Partial
−1.037 124 September 22, 1968

Total
0.9451
129 March 18, 1969

Annular
−0.2704 134 September 11, 1969

Annular
0.2201
139

Totality in Williamston, NC
USA
March 7, 1970

Total
0.4473 144 August 31, 1970

Annular
−0.5364
149 February 25, 1971

Partial
1.1188 154 August 20, 1971

Partial
−1.2659

Saros 134

[edit]

This eclipse is a part of Saros series 134, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on June 22, 1248. It contains total eclipses from October 9, 1428 through December 24, 1554; hybrid eclipses from January 3, 1573 through June 27, 1843; and annular eclipses from July 8, 1861 through May 21, 2384. The series ends at member 72 as a partial eclipse on August 6, 2510. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 11 at 1 minutes, 30 seconds on October 9, 1428, and the longest duration of annularity will be produced by member 52 at 10 minutes, 55 seconds on January 10, 2168. All eclipses in this series occur at the Moon’s descending node of orbit.[5]

Series members 32–53 occur between 1801 and 2200:
32 33 34

June 6, 1807

June 16, 1825

June 27, 1843
35 36 37

July 8, 1861

July 19, 1879

July 29, 1897
38 39 40

August 10, 1915

August 21, 1933

September 1, 1951
41 42 43

September 11, 1969

September 23, 1987

October 3, 2005
44 45 46

October 14, 2023

October 25, 2041

November 5, 2059
47 48 49

November 15, 2077

November 27, 2095

December 8, 2113
50 51 52

December 19, 2131

December 30, 2149

January 10, 2168
53

January 20, 2186

Metonic series

[edit]

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between September 12, 1931 and July 1, 2011
September 11–12 June 30–July 1 April 17–19 February 4–5 November 22–23
114 116 118 120 122

September 12, 1931

June 30, 1935

April 19, 1939

February 4, 1943

November 23, 1946
124 126 128 130 132

September 12, 1950

June 30, 1954

April 19, 1958

February 5, 1962

November 23, 1965
134 136 138 140 142

September 11, 1969

June 30, 1973

April 18, 1977

February 4, 1981

November 22, 1984
144 146 148 150 152

September 11, 1988

June 30, 1992

April 17, 1996

February 5, 2000

November 23, 2003
154 156

September 11, 2007

July 1, 2011

Tritos series

[edit]

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

December 21, 1805
(Saros 119)

November 19, 1816
(Saros 120)

October 20, 1827
(Saros 121)

September 18, 1838
(Saros 122)

August 18, 1849
(Saros 123)

July 18, 1860
(Saros 124)

June 18, 1871
(Saros 125)

May 17, 1882
(Saros 126)

April 16, 1893
(Saros 127)

March 17, 1904
(Saros 128)

February 14, 1915
(Saros 129)

January 14, 1926
(Saros 130)

December 13, 1936
(Saros 131)

November 12, 1947
(Saros 132)

October 12, 1958
(Saros 133)

September 11, 1969
(Saros 134)

August 10, 1980
(Saros 135)

July 11, 1991
(Saros 136)

June 10, 2002
(Saros 137)

May 10, 2013
(Saros 138)

April 8, 2024
(Saros 139)

March 9, 2035
(Saros 140)

February 5, 2046
(Saros 141)

January 5, 2057
(Saros 142)

December 6, 2067
(Saros 143)

November 4, 2078
(Saros 144)

October 4, 2089
(Saros 145)

September 4, 2100
(Saros 146)

August 4, 2111
(Saros 147)

July 4, 2122
(Saros 148)

June 3, 2133
(Saros 149)

May 3, 2144
(Saros 150)

April 2, 2155
(Saros 151)

March 2, 2166
(Saros 152)

January 29, 2177
(Saros 153)

December 29, 2187
(Saros 154)

November 28, 2198
(Saros 155)

Inex series

[edit]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200

December 20, 1824
(Saros 129)

November 30, 1853
(Saros 130)

November 10, 1882
(Saros 131)

October 22, 1911
(Saros 132)

October 1, 1940
(Saros 133)

September 11, 1969
(Saros 134)

August 22, 1998
(Saros 135)

August 2, 2027
(Saros 136)

July 12, 2056
(Saros 137)

June 22, 2085
(Saros 138)

June 3, 2114
(Saros 139)

May 14, 2143
(Saros 140)

April 23, 2172
(Saros 141)

Notes

[edit]
  1. ^ "September 11, 1969 Annular Solar Eclipse". timeanddate. Retrieved 8 August 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 8 August 2024.
  3. ^ "Annular Solar Eclipse of 1969 Sep 11". EclipseWise.com. Retrieved 8 August 2024.
  4. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. ^ "NASA - Catalog of Solar Eclipses of Saros 134". eclipse.gsfc.nasa.gov.

References

[edit]